A Frobenius theorem for Cartan geometries, with applications
نویسنده
چکیده
The classical result on local orbits in geometric manifolds is Singer’s homogeneity theorem for Riemannian manifolds [1]: given a Riemannian manifold M , there exists k, depending on dimM , such that if every x, y ∈ M are related by an infinitesimal isometry of order k, thenM is locally homogeneous. An open subset U ⊆ M of a geometric manifold is locally homogeneous if for every x, x ∈ U , there is a local automorphism f in U with f(x) = x. Such a local automorphism is a diffeomorphism from a neighborhood V of x in U to a neighborhood of x in U , with f an isomorphism between the geometric structures restricted to V and f(V ).
منابع مشابه
The Single-leaf Frobenius Theorem with Applications
Using the notion of Levi form of a smooth distribution, we discuss the local and the global problem of existence of one horizontal section of a smooth vector bundle endowed with a horizontal distribution. The analysis will lead to the formulation of a “one-leaf” analogue of the classical Frobenius integrability theorem in elementary differential geometry. Several applications of the result will...
متن کاملFrobenius kernel and Wedderburn's little theorem
We give a new proof of the well known Wedderburn's little theorem (1905) that a finite division ring is commutative. We apply the concept of Frobenius kernel in Frobenius representation theorem in finite group theory to build a proof.
متن کاملThe Sign-Real Spectral Radius for Real Tensors
In this paper a new quantity for real tensors, the sign-real spectral radius, is defined and investigated. Various characterizations, bounds and some properties are derived. In certain aspects our quantity shows similar behavior to the spectral radius of a nonnegative tensor. In fact, we generalize the Perron Frobenius theorem for nonnegative tensors to the class of real tensors.
متن کاملTractor Bundles in Cr Geometry
This is an outline of my lecture at the Hayama Symposium on several complex variables on December 21, 2002. The subject of the talk are new applications of the canonical Cartan connection for CR manifolds. Most of the results I will report on are based on joint research (partly in progress) with A.R. Gover and with J. Slovák and V. Souček. Partly, these results are specific for the class of CR ...
متن کاملKilling Fields of Holomorphic Cartan Geometries
We study local automorphisms of holomorphic Cartan geometries. This leads to classification results for compact complex manifolds admitting holomorphic Cartan geometries. We prove that a compact Kähler Calabi-Yau manifold bearing a holomorphic Cartan geometry of algebraic type admits a finite unramified cover which is a complex
متن کامل